Blog: Can the Smart Speaker Assistant revolutionize the Smart Home?

Can the Smart Speaker Assistant revolutionize the Smart Home?

While the market for Smart Home products is booming, the mainstream adoption is struggling. The products and services providing real value to consumers are few in comparison to the onslaught of products made ‘smart’ just because “we made an app for it because we could”.

The term ‘Smart Home’ is also misleading as homes today may be connected, but they are definitely not smart. The real Smart Home would require little interaction as it would learn your patterns, predict your needs and adapt to what you need. But until then we’ve been stuck with our Smartphone to control most of our connected devices.

And as we continue to having to manually control our Connected Homes the Smart Speaker Assistants enters trying to help us with just that.  These devices are simply put our existing Digital Assistants like Siri and Google Assistant put in a speaker, given a room wide microphone and the ability to control our connected devices.

The Digital Assistants haven’t seen widespread use yet, maybe because it’s a bit awkward to loudly ask your phone things in public.  But doing so in your home is a lot more acceptable. Asking your home to turn on Netflix for your kids when you’re cooking dinner or turning of all your lights by saying good night actually does provide make things a bit easier.


Having used the Google Home for a little more than a year, I now have six devices scattered around my home to be able to pick up my voice wherever I might be. I find myself using voice control all the time as it’s a much quicker and more comfortable way to turn on music, media and lights than to find and use my phone.

The ability to just speak a question into thin air and having the speaker in the next room correctly understand and provide an answer is sufficient proof that the technology has reached it’s necessary maturity.

Enabling the Smart Home

The Smart Speaker Assistants provide two important things for the Smart Home that so far has been lacking:

  1. It brings the Smart Home together in a way that hasn’t been possible before. You can buy almost any device you’d like and have it integrated into your home by letting it be controlled through voice control. It will make the issue of having 20 smart home apps less of a problem because you seldom will have to use them.
  2. Until we have the truly smart home that doesn’t need manual interaction it provides a much more suitable way to interact with your home than your smartphone can ever provide.

What do you need to get your own smart speaker assistant?

Well, first it’s important to understand that the Smart Speaker doesn’t give you a Smart Home. Unless you also get connected devices you can control it’s little more than a speaker you can ask questions. So either you already do or you can start with something simple like Philips Hue and a Chromecast which provide a lot of fun and impressive possibilities together with a smart assistant.

Which product should I choose?


Amazon Alexa was released November 2014 and was the first product of its sort go get some real market penetration. Exactly two years later Google made its move and released Google Home. More companies are following suit, of which the Apple Homepod is the most notable. And while I’m sure Apple will introduce innovative ideas to the product segment, for now we have to make due with comparing Alexa and Google Home.

Alexa, being two years older, boosts a larger number of integrations to other services and products. This is usually the main benefit being voiced in comparisons between the two. But Google is moving quickly and is adding support and new functions every other week. It’s also obvious that Google has a stronger experience with language understanding and AIs as Google Home is consistently the product to win in tests determining which device better interprets what you’re saying.

In the end, both products provide a glimpse into the voice controlled future and the choice should be based on what other ecosystems you’re using currently. And why not get one of each to try them out as they are only about $50 to $70 depending on in which country you buy them (Google Mini and Amazon Echo Dot). It’s also noteworthy that there are a lot of countries they aren’t released in yet. In Sweden you can get one, but for now you will have to make due with English and non-EU power plugs.

More information:

Partner and Senior Advisor Mikael Rönde,, +46 (0)70 88 66 794

Positioning technologies currently applied across industries:

Global Navigational Satellite System: Outdoor positioning requires line-of-sight to satellites, e.g. GPS: the tracking device calculates its position from 4 satellites’ timing signals then transmits to receiving network
–    via local data network, e.g. wifi, proprietary Wide Area Network
–    via public/global data network, e.g. 3G/4G

Active RFID: A local wireless positioning infrastructure built on premises indoor or outdoor calculates the position based on Time of Flight from emitted signal & ID from the tracking device to at least 3 receivers or when passing through a portal. The network is operating in frequency areas such as 2.4 GHz WiFi, 868 MHz, 3.7 GHz (UWB – Ultra Wide Band), the former integrating with existing data network, the latter promising an impressive 0.3 m accuracy. Tracking devices are battery powered.

Passive RFID: Proximity tracking devices are passive tags detected and identified by a reader within close range. Example: Price tags with built-in RFID will set off an alarm if leaving the store. Numerous proprietary systems are on the market. NFC (Near Field Communications) signifies a system where the reader performs the identification by almost touching the tag.

Beacons: Bluetooth Low Energy (BLE) signals sent from a fixed position to a mobile device, which then roughly calculates its proximity based on the fading of the signal strength. For robotic vacuum cleaners an infrared light beacon can be used to guide the vehicle towards the charging station.

Dead Reckoning: Measure via incremental counting of driving wheels’ rotation and steering wheel’s angle. Small variations in sizes of wheel or slip of the surface may introduce an accumulated error, hence this method is often combined with other systems for obtaining an exact re-positioning reset.

Scan and draw map: Laser beam reflections are measured and used for calculating the perimeter of a room and objects. Used for instance when positioning fork-lifts in storage facilities.

Visual recognition: The most advanced degree of vision is required in fully autonomous vehicles using Laser/Radar (Lidar) for recognition of all kinds of object and obstructions. A much simpler method can be used for calculating a position indoor tracking printed 2D barcodes placed at regular intervals in a matrix across the ceiling. An upwards facing camera identifies each pattern and the skewed projection of the viewed angle.

Inertia: A relative movement detection likewise classical gyroscopes in aircrafts now miniaturised to be contained on a chip. From a known starting position and velocity this method measures acceleration as well as rotation in all 3 dimensions which describes any change in movement.

Magnetic field: a digital compass (on chip) can identify the orientation provided no other magnetic signals are causing distortion.

Mix and Improve: Multiple of the listed technologies supplement each other, well-proven or novel, each contributing to precision and robustness of the system. Set a fixpoint via portals or a visual reference to reset dead reckoning & relative movement; supplement satellite signal with known fixpoint: “real time kinematics” refines GPS accuracy to mere centimetres; combine Dead Reckoning and visual recognition of 2D barcodes in the ceiling.

LoRaWAN: A low power wide area network with wide reach. An open standard that runs at unlicensed frequencies, where you establish a network with gateways.

Sigfox: A low power wide area network reminiscent of LoRa. Offered in Denmark by IoT Danmark, which operates the nationwide network that integrates seamlessly to other national Sigfox networks in the world.

NFC: Used especially for wireless cash payments.

Zigbee: Used especially for home automation in smart homes, for example. lighting control.

NB-IoT: Telecommunications companies’ IoT standard. A low-frequency version of the LTE network.

2-3-4G Network: Millions of devices are connected to a small SIM card, which runs primarily over 2G, but also 3G and 4G.

Wifi: The most established standard, especially used for short-range networks, for example. in production facilities.

CATM1: A low power wide area network, especially used in the United States.

Glaze IoT Cloud Project Process

Beacon Tower is Glaze’s Industrial IoT Cloud Platform that can act as either a stepping stone (Platform-as-a-Service, PaaS) or as an out-of-the-box solution (Software-as-a-Service, SaaS) for collection of IoT-data.

Beacon Tower resides in Microsoft Azure and is designed as a customisable and cost-effective IIoT Cloud Platform that helps simplify deploying, managing, operating, and capturing insights from internet-of things (IoT)-enabled devices. Our customers have the full ownership of their data.

When running it as a PaaS we utilise the design and can run it on our customers’ Azure tenant and customise it fully to their requirements.

Beacon Tower connects to all sensors, PLC, DCS, SCADA, ERP, Historians and MES to gain maximum automation flexibility and ​prevent vendor lock-in.

For more information visit or read the PDF.

Edge Computing Categories and Questions

o Sensors
o Internet connectivity
o Battery consumption
o Field Gateway
o Communication protocols (HTTP, AMQP, MQTT, Gateway)
o Format of the telegrams sent to the cloud (JSON, Avro, etc.)

o Number of devices & number of signals
o Amount of data to transfer per day
– Event-based or batched or mix
– Transfer rate (every second, minute, hour)
o Device timestamps
– Synchronized timestamps with cloud or not
– Local buffering on device, late and/or repeated data
o Any time-critical notifications / alarms
– Latency expectations for non-time critical data
– Alarms generated by device and/or by cloud platform
o Cloud-to-device messages & commands
o Analytics
– Results from time-series data / Streaming analytics
– Analytics workflows on data, machine learning etc.
– Edge analytics / intelligence

Cost expectations:
o Retention periods (for reporting purposes)
o Aggregation of data, possibilities for cost saving

External integrations:
o Reference data / online data

Administration, rights and access:
o Requirements for multi-tenancy (segregated owners)
o Owners/tenants and operators/technicians
o Administrating access to data, auditing use
o API management, consumption of data, 3rd party integrators

o KPI measurements for device
o KPI measurements for cloud platform
o Requirements on operators and SLA’s

User-interfaces and functions:
o Operators/technicians
o Customers/end-users

Glaze Business Innovation and Development Framework (BIDF)

1. Strategy

Creating an IoT Strategy that aligns with the existing company strategy and/or points out any discrepancies that needs to be addressed. The IoT Strategy should pinpoint type of IoT opportunities that should be sought and how they can support the Company delivering on their overall strategies.

2. Ideation

The Ideation phase is an innovative and creative phase where we identify the IoT opportunities within the company. This is done by using existing assets, industry expertise, industry analysis, strategy and IoT expertise to find opportunities for IoT endeavors. This is done in an structured but open-minded and creative setting.

3. Refinement

In Refinement the opportunities are detailed, prioritized and evaluated in a series of steps with the goal of finding a short list of initiatives the company want to pursue. These steps takes strategy, competence, risk level, customer maturity etc into account during prioritization.

4. Valuation

The short list of opportunities are detailed even further and business cases are created for each of them. This will lead to a decision which opportunity to pursue further.

Moving on from the Business Innovation phases to Development activities we focus on taking the minimum possible risk of building the wrong solution by using agile development practices.

5. Exploration

Proof of Concepts carried out in this phase in order to map out technology as well as user-oriented risks. This also refines the budget and thus valuation and business case. Also giving valuable input to baseline system architecture and eco system involvement.

6. Planning

Moving to Planning phase, the most promising business case has been selected and now it is time to plan the Minimal Viable Product (MVP), in terms of timeline, resources and detailed design.

7. Foundation

Implementing the baseline architecture, toolchains and most critical points of the project.

8. Development

Full MVP is developed using these three principles: Start small, don’t over-engineer; Agile software development – late changes welcomed; Continuous delivery – every change is immediately visible.

9. Operations

Operations in an IoT-project is more than just keeping the product alive. It is life-long updates and continous sharpening of features and business model, meaning new ideas are fed back in the Innovation and Development Framework.

Heat map example on a typical business case: